

VAccine monitoring Collaboration for Europe

Covid-19 medicinal product studies by VAC4EU

Prof. dr. Miriam Sturkenboom

Head of department Datascience & Biostatistics, University Medical Center Utrecht VAC4EU president

Declaration of interest

- President and co-founder of the Vaccine Monitoring collaboration for Europe (non-remunerated)
- Head of department conducting
 - funded EMA studies (ACCESS, CONSIGN, ECVM, COVE, CVM)
 - EMA required PASS studies for COVID-19 vaccines for Pfizer, J&J and AstraZeneca
 - All according to ENCePP code of conduct

VAccine monitoring Collaboration for Europe

Readiness & collaboration has proven to be key to generation of timely and robust RWE for benefit risk monitoring of COVID-19 vaccines in Europe

EUROPE: WAS READY DUE TO LESSONS LEARNED IN H1N1 PANDEMIC AND THE IMI FUNDED ADVANCE PROJECT FROM 2013-2019

Vaccine Volume 38, Supplement 2, 22 December 2020, Pages B1-B7

Why we need more collaboration in Europe to enhance post-marketing surveillance of vaccines

Miriam Sturkenboom ^{a, b, c} ≈ ⊠, Priya Bahri ^d ⊠, Antonella Chiucchiuini ^e ⊠, Tyra Grove Krause ^f ⊠, Susan Hahné ^g ⊠, Alena Khromava ^h ⊠, Maarit Kokki ⁱ ⊠, Piotr Kramarz ⁱ ⊠, Xavier Kurz ^d ⊠, Heidi J. Larson ^j ⊠, Simon de Lusignan ^{k, 1} ⊠, Patrick Mahy ^m ⊠, Laurence Torcel-Pagnon ⁿ ⊠, Lina Titievsky ^o ⊠, Vincent Bauchau ^p ⊠, on behalf of the ADVANCE consortium ¹

https://vac4eu.org/

READINESS: Expertise & Data access in EU

- 25 members (expertise and/or data access)
- Access to large national/regional health data from different provenance (Registries/medical record/hospitalizations/insurance) >130 M

Country	Type of health data sources	# persons
NL	Record linkage	6 Million
NO	Record linkage	5 million
DK	Record linkage	5.5 million
IT (4)	Medical records (GP/FP Regional record linkage	12 million
ES (4)	Record linkage & medical records	30 million
UK	Medical records & HES	16 million
DE	Insurance	16 million
FR	SNDS (Claims)	60 million

VAC4EU Members (Dec. 2022)

- > 25 members from 9 European Countries
 - > 18 Data Access Providers (DAPs) and 15 Data Sources for secondary use
 - > Overall population covered with accessible data for analysis: ~152 million patients
 - > infrastructure for primary data collection (cohort event monitoring)

https://vac4eu.org/

READINESS:

Generic distributed analytics pipeline common data model, common

analytics for secondary use of data

Utilizing the generic RWD-RWE pipeline developed in the IMI-ADVANCE and IMI-ConcePTION projects

CDM description: https://www.imi-conception.eu/wp-content/uploads/2020/10/ConcePTION-D7.5-Report-on-existing-common-data-models-and-proposals-for-ConcePTION.pdf

VAC4EU study track record (Dec. 2022)

- Participating in 5 studies funded by the European Medicines Agency
 - ACCESS: template protocols, AESI list, background rates for covid-19 vaccine AESI (finalized & presented at PRAC)
 - Early covid vaccine monitor study: cohort event monitoring & EHR based near real time monitoring (finalized & presented at PRAC)
 - **Covid-19 vaccine monitor study** cohort event monitoring special populations, safety evaluation & methods (ongoing, results presented at PRAC (myocarditis) & PDCO (pediatric severity)
 - **COVE:** covid-19 vaccine effectiveness of homologous and heterologous primary and booster schemes (submitted)
 - **CONSIGN**: medicines use and effects in covid-19 affected pregnancies (finalized)
- EMA requested post-authorization safety studies for covid-19 vaccines
 - Pfizer: 2 interim reports submitted to PRAC
 - AstraZeneca: 1 interim report submitted to PRAC
 - Janssen: 1 interim report submitted to PRAC
 - Moderna: 2 interim report submitted to PRAC
 - Sanofi: protocol phase
- GVDN genomics and associations studies
- ALL PROTOCOLS PUBLICLY AVAILABLE ON EU PAS

Background rates of AESI widely used by EMA to address signals (O/E analysis)

- List of AESI based defined (August 2020)
- Background rates generated and publicly released
- Data used for O/E analyses by EMA and by vaccine manufacturers for observed/expected analyses

Background rates VAC4EU based approach vs. OHDSI rates (example narcolepsy)

Home About Community Study Network Toolbox Training & Webinars Results ADVANCE Blueprint COVID-19 vaccine monitoring Get In Toucl

doi: <u>10.1136/bmj.n1435</u>

EMA funded independent research to monitor COVID-19 vaccines/medicines

Covid 19 in pregnancies

January 2022

May 2020

January 2021

Cohort event monitoring Covid-19 Vaccine Monitor- Sept 2021-2023

Countries :

 Romenia, Slovakia, Ireland, Switzerland, Spain, Belgium, Netherlands, Germany, Croatia, France Italy, UK

Specific populations targeted

- Pregnant women
- Immunocompromised persons
- Former COVID-19
- History of allergies
- Booster doses

Detional and healtenaum

Cohort event monitoring: Workflow for reported ADRs

Zenodo. https://doi.org/10.5281/zenodo.6629551

Safety of COVID-19 Vaccines among the Pediatric Population – Comparative Analysis of European Cohort Event Monitoring vs Pivotal Trials

Fariba Ahmadizar^{*1}, Nicoletta Luxi^{*2}, Monika Raethke³, Sandor Schmikli¹, Fabio Riefolo⁴, Putri Widi Saraswati¹, Camelia Bucsa⁵, Alhadi Osman¹, Megan Liddiard⁶, Francisco Batel Maques⁷, Giuliana Petrelli⁸, Simona Sonderlichová⁹, Nicolas H. Thurin¹⁰, Felipe Villalobos¹¹, Gianluca Trifirò^{8**} and Miriam Sturkenboom ^{1**} and ilmiovaccinoCOVID19 collaborating group.

	5-11	. years		12-17	Total			
	Corr	Comirnaty		Comirnaty		Spikevax		
	First dose	Second dose	First dose	Second dose	First dose	Second dose	First dose	Second dose
Vaccinees included in the analysis who received the first and the second doses of the COVID-19 vaccine	250 (100)	123 (100)	395 (100)	226 (100)	13 (100)	8 (100)	658 (100)	357 (100)
At least one ADR, n (%)	72 (28.8)	21 (17.1)	214 (54.2)	118 (52.2)	7 (53.8)	3 (37.5)	293 (44.5)	142 (39.8)
At least one serious ADR, n (%)	0 (0.0)	0 (0.0)	1 (0.3)	1 (0.4)	0 (0.0)	0 (0.0)	1 (0.2)	1 (0.3)
At least one unsolicited ADR	10 (4.0)	3 (2.4)	40 (10.1)	20 (8.8)	4 (30.8)	-	54 (8.2)	23 (6.4)

EHR cohort monitoring of 31 AESI after vaccines EUPAS40404

Month of vaccination, persontime dose 1 or dose 2 counts from day of vaccination Vaccination date dose 2 T=0 dose 2

Vaccination date dose 1 T=0 dose1

Sturkenboom, MCJM, Messina, D, Paoletti, O, de Burgos, A, Garcia, P, Huerta Álvarez Consuelo, Llorente, A, Klungel, O, Martin, M, Martinez, M, Martin, I, Overbeek, J, Souverein, P, Swart, K, & Gini, R. (2022). Cohort monitoring of Adverse Events of Special Interest and COVID-19 diagnoses prior to and after COVID-19 vaccination (1.0). Zenodo. https://doi.org/10.5281/zenodo.6762311

VAccine monitoring Collaboration for Europe

Four data sources selected on short lag times, allowing for near real time monitoring : 25 million Using ConcePTION CDM and pipeline & VAC4EU tools

VAC EU

Zenodo. https://doi.org/10.5281/zenodo.6762311

Results: Incidence rates of GBS

Early

Comirnaty - dose 1 - IT-ARS +2.4 (0.3;9.1) ES-BIFAP-PC +1.4 (0.1;5.2) ES-BIFAP-PC-HOSP **>>** +3.9 (0.1:21.9) NL-PHARMO 4.8 (0.4;20.5) UK-CPRD -+2.1 (0.5;5.9) Comirnaty - dose 2 - IT-ARS -+1.4 (0.1;6.0) . ES-BIFAP-PC +1.0 (0.1;3.8) . ES-BIFAP-PC-HOSP × NL-PHARMO - × 18.3 (0.5:101.8) UK-CPRD -. +0.4(0.0;2.1)Vaxzevria - dose 1 - IT-ARS +5.2 (0.1;28.7) ES-BIFAP-PC +1.8 (0.2;7.2) ES-BIFAP-PC-HOSP +3.1 (0.1;17.4) NL-PHARMO -- × UK-CPRD -2.3 (1.1;4.2) . Vaxzevria - dose 2 - IT-ARS ES-BIFAP-PC ES-BIFAP-PC-HOSP - > NL-PHARMO - × UK-CPRD . +0.8 (0.1;2.9) Spikevax - dose 1 - IT-ARS ES-BIFAP-PC ES-BIFAP-PC-HOSP NL-PHARMO **UK-CPRD** Spikevax - dose 2 - IT-ARS ES-BIFAP-PC ES-BIFAP-PC-HOSP NL-PHARMO × UK-CPRD Janssen vaccine - dose 1 - IT-ARS × +7.0 (0.2;39.0) ES-BIFAP-PC × +7.9 (0.2;43.9) ES-BIFAP-PC-HOSP × NL-PHARMO UK-CPRD -

> o 20 40 60 Standardised incidence rate per 100,000 person-years

AESI_GBS_narrowVax_Pfizer

Study	TE	seTE	Incidence Rate Ratio	IRR	95%-CI	Weight (common)	Weight (random)
ARS	-0.29	0.5117	k	0.75	[0 27: 2 04]	25.4%	25.5%
BIFAP PC	-0.11	0.5173		0.89	0.32 2.471	24.9%	25.2%
CPRD	-0.26	0.4547		0.77	[0.32] 1.88]	32.2%	29.0%
PHARMO	1.35	0.6171		- 3.85	[1.15; 12.91]	17.5%	20.3%
Common effect model Random effects model Heterogeneity: $I^2 = 45\%$, τ^2	= 0.19	85, p = 0.14		1.05 1.10	[0.63; 1.74] [0.56; 2.15]	100.0% 	100.0%
		0.1	0.5 1 2 1	0			

AESI_GBS_narrowVax_J&J

Study	TE	seTE	Incidence Rate Ratio	IRR	95%-CI	Weight (common)	Weight (random)
ARS BIFAP_PC	1.71 1.76	1.0056 1.0099	+	- 5.51 - 5.79	[0.77; 39.58] [0.80; 41.88]	50.2% 49.8%	50.2% 49.8%
Common effect r Random effects Heterogeneity: I ² =	model model 0%, τ ² = 0, p =	• 0.97		5.65 5.65	[1.40; 22.83] [1.40; 22.83]	100.0% 	 100.0%

AESI_GBS_narrowVax_AZ

Study	TE seTE	Incidence Rate Ratio	IRR	95%-CI	Weight (common)	Weight (random)
ARS BIFAP_PC CPRD	-0.34 1.0056	*	0.71 [— 2.01 [1.43 [0.10; 5.10] 0.49; 8.25] 0.80; 2.56]	7.0% 13.6% 79.5%	7.0% 13.6% 79.5%
Common effect mo Random effects mo Heterogeneity: $l^2 = 0\%$	del del 5, τ ² = 0, p = 0.70 0.1	0.5 1 2	1.43 [(1.43 [(10	0.85; 2.40] 0.85; 2.40]	100.0% 	100.0%

Zenodo. https://doi.org/10.5281/zenodo.6762311

Results: Incidence rates of TTS

Vaccine- Monitor Early COVID-19

Study	TE	seTE		Incidence Rate Ratio	IRR	95%-CI	Weight (common)	Weight (random)
ARS BIFAP_PC CPRD	-1.26 0.97 -0.41	1.0097 — 1.0984 0.7185	-	*	0.28 2.64 0.66	[0.04; 2.05] [0.31; 22.73] [0.16; 2.71]	26.2% 22.1% 51.7%	26.2% 22.1% 51.7%
Common effect model Random effects model Heterogeneity: $l^2 = 12\%$, τ^2	< 0.00	01, p = 0.32	0.1	0.5 1 2 10	0.72 0.72	[0.26; 1.99] [0.26; 1.99]	100.0% 	 100.0%

AESI_ArterialVTETPVax_Pfizer

Study	TE seTE	Incidence Rate Ratio	IRR	95%-CI	Weight (common)	Weight random)
ARS BIFAP_PC CPRD	0.83 0.7205 2.32 1.1030 1.03 0.3379	++	2.30 	[0.56; 9.44] [1.17; 88.12] [1.45; 5.46]	16.7% 7.1% 76.1%	16.7% 7.1% 76.1%
Common effect mode Random effects mode Heterogeneity: $l^2 = 0\%$,	el c ² < 0.0001, p = 0.50	0.1 0.51 2 10	2.98 2.98	[1.67; 5.31] [1.67; 5.31]	100.0% 	 100.0%

AESI ArterialVTETPVax AZ

AESI_ArteriaITPVax_J&J

Zenodo. https://doi.org/10.5281/zenodo.6762311

EMA funded independent research to monitor COVID-19 vaccines

Testing signals

Rapid Safety Assessment of SARS-CoV-2 vaccines in EU Member States using electronic health care data sources (EUPAS42467) Covid-19 Vaccine Monitor-EHR

Readiness to rapidly quantify signals

Preparedness

- Extract, transform load relevant data into ConcePTION Common Data Model
- Run quality checks & background rates (vaccination data, AESI identification)
- Protocols pre-approved
- Methods testing

Data sources:

- Italy (3): Tuscany region, Lazio Region, Caserta
- Spain (3):
 - BIFAP, Spanish Medicines Agency
 - SIDIAP data (Catalunya)
 - FISABIO (Valencia)
- NL (1): PHARMO
- UK (1): CPRD
- No (1): Norwegian registers

Signal testing designs & methods work

https://vac4eu.org/

Check for updates

OPEN ACCESS

EDITED BY

Christopher Blanchette, University of North Carolina at Charlotte, United States

REVIEWED BY

Antonina Argo, University of Palermo, Italy Patrick C. Hardigan, Nova Southeastern University, United States

*CORRESPONDENCE Miriam C. J. M. Sturkenboom, m.c.j.sturkenboom@umcutrecht.nl

[†]These authors have contributed equally to this work and share first authorship

SPECIALTY SECTION

This article was submitted to Pharmacoepidemiology, a section of the journal Frontiers in Pharmacology

RECEIVED 06 September 2022 ACCEPTED 31 October 2022 PUBLISHED 24 November 2022

CITATION

Bots SH, Riera-Arnau J, Belitser SV, Messina D, Aragón M, Alsina E, Douglas IJ, Durán CE, García-Poza P, Gini R, Herings RMC, Huerta C, Sisay MM, Martín-Pérez M, Martin I, Overbeek 14, Paoletti O Myocarditis and pericarditis associated with SARS-CoV-2 vaccines: A population-based descriptive cohort and a nested self-controlled risk interval study using electronic health care data from four European countries

Sophie H. Bots^{1†}, Judit Riera-Arnau^{2,3†}, Svetlana V. Belitser¹, Davide Messina⁴, Maria Aragón⁵, Ema Alsina^{2,3}, Ian J. Douglas⁶, Carlos E. Durán^{2,3}, Patricia García-Poza⁷, Rosa Gini⁴, Ron M. C. Herings⁸, Consuelo Huerta⁷, Malede Mequanent Sisay^{2,3}, Mar Martín-Pérez⁷, Ivonne Martin^{2,3}, Jetty A. Overbeek⁸, Olga Paoletti⁴, Meritxell Pallejà-Millán⁹, Anna Schultze⁶, Patrick Souverein¹, Karin M. A. Swart⁸, Felipe Villalobos⁵, Olaf H. Klungel¹ and Miriam C. J. M. Sturkenboom^{2,3*}

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9730238/pdf/fphar-13-1038043.pdf

MYOCARDITIS A) First vaccine dose B) Second vaccine dose Incidence 95%. Incidence 95% Vaccine brand Rate Ratio Confidence Interval Vaccine brand Rate Ratio Confidence Interval Pitter Pitzer ARS (Italy) 1.48 0.42; 5.26] ARS (Italy) 3.74 [0.79; 17.72] 0.95 D.16; 5.79] 4.79 [1.08 21.28] CPRD (United Kingdom) 2.24 [1.07; 4.70] CPRD (United Kingdom) [1.26; 7.12] -- 1 × 2 3.00 SIDIAP (Spain) 0.62[0.06; 5.98] SIDIAP (Spain) 0.85[0.05; 13.47] Heiteroopeneity: $t^2 = 0\%$, $\alpha = 0.63$ Histomoreneity: $t^2 = 0\%$, $\mu = 0.75$ 1.72 [0.96; 3.09] 3.18 11.65; 6.121 ____ AsiraZeneca AstiraZemerca BIF# PREMARCENCE 1.65 [0.16; 17.03] CPRD (United Kingdom) 2.42 [0.96; 6.07] CPRD (United Kingdom) 0.89 D.37 2.13] Electromycenceity: most appplicantale 2.42 [0.96; 6.07] Helenoponeily: $t^2 = 0.95$, $\mu = 0.62$ 0.96 [0.42; 2.17] Modeme Reportermen ARS (Italy) 10.17 [1.61; 64.32] 1.50 [0.20; 11.26] BIFY PHILIPHICE HO 3.42 [0.33; 35.92] -CPRD (United Kingdom) CPRD (United Kingdom) 11.58 [1.32, 101.60] 9.30 [0.97; 88.97] Helenogeneily: $I^2 = 45\%$, $\sigma = 0.18$ 4.00 [0.54; 23.52] SIDIAP (Spain) 0.44 [0.02; 12.18] Histononanaity; /2 $0.95, \mu = 0.390$ 5.28 [1.68; 16.61] Jameseam 0.1 0.5 1 2 5 BIFY PHERARD . 1.59 [0.12; 21.62] vaccine lowers risk vaccine increases risk I lesierrogenesity: mut appplican bles 1.399 0.12; 21.62]

PERICARDITIS

		Incidence	95	F%.
Vaccine brand		Rate Rafio	Confiden	ce linierval
P ^a liteen				
ARS (Italy)	_	1.13	0.64	1.98]
BIEA BREIMARESARD		0.83	[0.51]	1.34]
CPRD (United Kingdom)		0.99	[0.64]	1.51]
SIDIAP (Spain)		0.89	[0.49]	1.62]
Пайалорилайу: / ² = 0%, уз = 0.06		01365	[[0.74;	1.22
AsiraZeneca				
ARS (Italy) *		0.82	[0.21]	3.26]
BILA MICINALIZARO		2.03	[0.97]	4.24]
CPRD (United Kingdom)		0.62	[0.39]	0.99]
SIDIAP (Spain)		0.72	[0.27]	1.90]
Elektronycowsky: $T = 50\%$, $\mu = 0.07$		01.953	llareat,	1
Mitselbermen				
ARS (Italy)		0.35	[0.08;	1.58]
BILA BREIMARENAD		1.14	[0.54]	2.37]
CPRD (United Kingdom)		3.61	[0.85]	15.25]
SIDIAP (Spain)	-	0.67	[0.24]	1.85]
Following $t^2 = 47\%, \ \mu = 0.13$		0,33	[[01/438;	2.049
Jamesson				
ARS (Italy)	>	3.06	[0.41]	22.53
BIFY PHENJAREADO 🗧 👘		0.23	[0.03]	1.86]
SIDIAP (Spain)		0.52	[0.06;	4.56]
Eksiemojomosily: $t^2 = 30\%, \mu = 0.20$		0.74	[[0.16;	3.42
	· · · · ·			
0.1 0.5 1	2 5			

0.5 1

2

5

vaccine increases risk

D.1

vaccine lowers risk

D) Second vaccine dose			
	Incidence	95	7%.
Vaccine brand	Rate Ratio	Contiden	ce interval
Bajigestat.			
ARS (Italy)	1.31	0.66	2.60]
ENE & ISH ENERGY OD	0.89	[0.52]	1.52]
CPRD (United Kingdom)	0.74	[0.44]	1.26]
SIDIAP (Spain)	0.87	0.41	1.81]
Elektronopenosity: $t^2 = 0.96$, $\mu = 0.625$	0.30	10.67°;	1.21)
AssiralZemessa			
ARS (Italy)	→ 3.75	[0.98]	14.33
ENEY PRICE ADD	→ 1.39	0.38	5.05
CPRD (United Kingdom)	0.74	0.43	1.27
SIDIAP (Spain)	⇒ 0.93	0.15	5.66]
Electronomy $t^2 = 42\%$, $\mu = 0.16$	1.22	(0.57°;	2.61]
Billize:Berninea			
ARS (Italy)	→ 3.25	[1.21]	8.721
ENERGY REAL PROPERTY AND	0.95	10.39	2.31
SIDIAP (Spain)	0.31	10.06	1.561
Eleformigramaty: $t^2 = 7.1\%$, $\mu = 0.03$	1.11	10.32:	3.831
0.1 0.5 1 2	5		

vaccine increases risk

vannine lowers risk

Incidence and severity of COVID-19 in children Level 1. Diagnosis of COVID-19 disease or positive test without

hospitalization. Level 2. Hospitalization related to COVID-19 disease. Level 3. ICU admission related to COVID-19 disease.

Level 4. Death after COVID-19 disease.

Results: 1st vaccination

• ARS:

- 79% Pfizer, 21% Moderna.
- History of COVID-19: 7-8%

• Caserta:

- 98.6% Pfizer.
- History of COVID-19: 7-10%

• Pedianet:

- Unknown brand, 3262 subjects.
- History of COVID-19: 8.5%

• BIFAP:

- 88.6% Pfizer, 11.2% Moderna.
- History of COVID-19: 5-9%

• VID:

- 90.6% Pfizer, 9.3% Moderna.
- History of COVID-19: ~10%

• SIDIAP:

- 91% Pfizer, 7.1% Moderna.
- History of COVID-19: 8 11%

Results: COVID-19 incidence and severity - ARS

Severity of covid

Covid in ICU or dead

Death after covid

Any covid severity

Conclusions of study

- Vaccination rates were high for 12-17 years of age, but lower in younger ages.
- Rate of non-severe COVID-19 disease (disease not requiring hospitalization) was high in children non-vaccinated, especially for the delta and omicron variant.
- Hospitalizations, ICU admission and death following COVID-19 disease were very rare in each of the age category, prior and after vaccination.

Reflections

H1N1 and COVID-19 showed that readiness is crucial to address pandemic vaccine safety concerns

- Data, protocols, infrastructures, code lists and persons need to be ready
- Cohort event monitoring is useful to re-assure, mostly for solicited reactions
- EHR data crucial for monitoring and evaluation of AESI
- VAC4EU has a created a community working according to certain procedures and share tools, code lists with an open science spirit

Thanks to all the partners

University Medical Center Utrecht, Utrecht, The Netherlands (UMCU), Universiteit Utrecht (UU), Utrecht, Aarhus University, RIVM, Lazio region, Pedianet, Agenzia Regionale di Sanita' Toscana (ARS), LAREB, RTI Health Solutions (RTI-HS), Spain & US, PHARMO Institute, University of Verona, Paul Ehrlich Institut (PEI), Bereich Pharmacovigilanz, Université de Bordeaux, Bordeaux PharmacoEpi (BPE), France, University of Oslo (UiO), Norway, Agency for Medicinal Products and Medical Devices of Croatia (HALMED), Luxembourg Institute of Health (LIH), Spanish Agency on Medicines and Medical Devices (AEMPS) -BIFAP database, London School of Hygiene and Tropical Medicine (LSHTM), Team-it Research SL (TEAMIT), University of Bern, Switzerland, Drug Safety Research Unit (DSRU), UK, CLPP Vaccines Network, Portugal, SLOVACRIN Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Slovakia , Masaryk University, Faculty of Medicine, Brno, Czech Republic

> Keep updated about results <u>https://vac4eu.org/</u> https://zenodo.org/communities/vac4eu/